Skip to contents

The aim of this vignette is to show the calculation of all statistical indicators only related to meteorological data (indicator evolving flow are excluded).

library(CARD)
#> Loading required package: EXstat
library(airGRdatasets)
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union

Presentation of the dataset

The package airGRdatasets provides time series for gauging stations located on Metropolitan French territory.

The river basins present in this package are:

# Get all data sets in the package
station_ids <- ls("package:airGRdatasets")

# Create a table with meta data of each gauging station
station_metadata <- dplyr::bind_rows(
  lapply(station_ids,
  function(id){
    data <- base::get(id)
    data.frame(CodeH3 = data$Meta$Code$H3,
               Name = data$Meta$Name,
               Latitude = data$Meta$Coor$Y,
               Longitude = data$Meta$Coor$X,
               start = first(data$TS$Date),
               end = last(data$TS$Date))
  })
)
knitr::kable(station_metadata)
CodeH3 Name Latitude Longitude start end
A273011002 La Bruche à Russ [Wisches] 48.50507 7.27510 1999-01-01 2018-12-31
A605102001 La Meurthe à Saint-Dié-des-Vosges 48.28472 6.95606 1999-01-01 2018-12-31
B222001001 La Meuse à Saint-Mihiel 48.87090 5.53099 1999-01-01 2018-12-31
E540031001 La Canche à Brimeux 50.44827 1.83080 1999-01-01 2018-12-31
E645651001 La Nièvre à l’Étoile 50.00921 2.04971 1999-01-01 2018-12-31
F439000101 Le Loing à Épisy 48.33755 2.78710 1999-01-01 2018-12-31
H010002001 La Seine à Plaines-Saint-Lange 47.99599 4.48061 1999-01-01 2018-12-31
H120101001 L’Aube à Bar-sur-Aube 48.21864 4.73602 1999-01-01 2018-12-31
H622101001 L’Aisne à Givry 49.49201 4.53770 1999-01-01 2018-12-31
J171171001 Le Trieux à Saint-Péver - Pont Locminé 48.48336 -3.11467 1999-01-01 2018-12-31
J421191001 L’Odet à Ergué-Gabéric - Treodet 48.00625 -4.06374 1999-01-01 2018-12-31
K134181001 L’Arroux à Rigny-sur-Arroux 46.53406 4.03291 1999-01-01 2018-12-31
K265401001 La Couze Pavin à Saint-Floret 45.55077 3.11012 1999-01-01 2018-12-31
K731261001 L’Indre à Saint-Cyran-du-Jambot 47.01712 1.12650 1999-01-01 2018-12-31
V123521001 L’Ire à Doussard 45.78309 6.22419 1999-01-01 2018-12-31
X031001001 La Durance à Embrun [La Clapière] - DREAL PACA 44.55218 6.48784 1999-01-01 2018-12-31
X045401001 L’Ubaye au Lauzet-Ubaye [Roche-Rousse] - DREAL PACA 44.45007 6.40111 1999-01-01 2018-12-31
Y643401001 L’Esteron au Broc [La Clave] 43.84653 7.15666 1999-01-01 2018-12-31
Y862000101 Le Taravo à Zigliara [Pont d’Abra] 41.80990 8.95951 1999-01-01 2018-12-31

We select randomly 3 stations for this vignette.

sel_ids <- sample(station_ids, size = 3)
sel_ids
#> [1] "K265401001" "K134181001" "E645651001"

And we concat and format the data of these three stations:

df_ts <- dplyr::bind_rows(
  lapply(sel_ids,
  function(id){
    df <- base::get(id)$TS
    df$id <- id
    return(df)
  })
)
df_ts$Date <- as.Date(df_ts$Date) # Convert to date format
str(df_ts)
#> 'data.frame':    21915 obs. of  7 variables:
#>  $ Date: Date, format: "1999-01-01" "1999-01-02" ...
#>  $ Ptot: num  0.2 18.9 22.5 0.5 0 0 1.8 16.6 3.4 11.8 ...
#>  $ Temp: num  3.8 3.1 4.2 6.1 8.5 8.3 6.1 3 -0.6 -4 ...
#>  $ Evap: num  0.4 0.3 0.4 0.5 0.6 0.6 0.5 0.3 0.2 0 ...
#>  $ Qls : int  3120 3150 5380 6440 5330 4990 4640 5190 5460 4810 ...
#>  $ Qmmd: num  1.25 1.26 2.15 2.57 2.13 ...
#>  $ id  : chr  "K265401001" "K265401001" "K265401001" "K265401001" ...

Statistical indicators for temperatures

We list all available indicators for temperature data.

We use the function CARD_list_all() to get the complete list of available indicators.

metaEX_all = CARD_list_all()
str(metaEX_all)
#> tibble [563 × 23] (S3: tbl_df/tbl/data.frame)
#>  $ CARD_name                : chr [1:563] "ETPA" "BFI_Wal" "BFM" "delta{BFI}_LH_H1" ...
#>  $ variable_en              : chr [1:563] "ETPA" "BFI_Wal" "BFM" "delta{BFI}_LH_H1" ...
#>  $ unit_en                  : chr [1:563] "mm" "without unit" "without unit" "without unit" ...
#>  $ name_en                  : chr [1:563] "Cumulative annual evapotranspiration" "Baseflow index" "Baseflow magnitude" "Change of baseflow index between the near horizon and historical period (Lyne and Hollick)" ...
#>  $ description_en           : chr [1:563] "" "Ratio between mean inter-annual base flow and mean inter-annual flow" "" "Ratio between mean inter-annual base flow and mean inter-annual flow" ...
#>  $ method_en                : chr [1:563] "" "1. no temporal aggregation - extraction of the base flow (Wallingford)\n2. no temporal aggregation - calculatio"| __truncated__ "1. no temporal aggregation - extraction of the base flow (Wallingford)\n2. aggregation by day of the year - ave"| __truncated__ "1. no temporal aggregation - extraction of the base flow (Lyne and Hollick)\n2. no temporal aggregation - calcu"| __truncated__ ...
#>  $ sampling_period_en       : chr [1:563] "09-01, 08-31" NA NA NA ...
#>  $ topic_en                 : chr [1:563] "Evapotranspiration, Average, Intensity" "Flow, Base Flow, Intensity" "Flow, Base Flow, Intensity" "Flow, Base Flow, Intensity" ...
#>  $ variable_fr              : chr [1:563] "ETPA" "BFI_Wal" "BFM" "delta{BFI}_LH_H1" ...
#>  $ unit_fr                  : chr [1:563] "mm" "sans unité" "sans unité" "sans unité" ...
#>  $ name_fr                  : chr [1:563] "Cumul des évapotranspirations annuelles" "Indice de débit de base" "Magnitude du débit de base" "Changement de l'indice de débit de base entre l'horizon proche et la période historique (Lyne et Hollick)" ...
#>  $ description_fr           : chr [1:563] "" "Rapport entre débit de base moyen inter-annuel et débit moyen inter-annuel" "" "Rapport entre débit de base moyen inter-annuel et débit moyen inter-annuel" ...
#>  $ method_fr                : chr [1:563] "" "1. aucune agrégation temporelle - extraction du débit de base (Wallingford)\n2. aucune agrégation temporelle - calcul du BFI" "1. aucune agrégation temporelle - extraction du débit de base (Wallingford)\n2. agrégation par jour de l’année "| __truncated__ "1. aucune agrégation temporelle - extraction du débit de base (Lyne et Hollick)\n2. aucune agrégation temporell"| __truncated__ ...
#>  $ sampling_period_fr       : chr [1:563] "01-09, 31-08" NA NA NA ...
#>  $ topic_fr                 : chr [1:563] "Évapotranspiration, Moyenne, Intensité" "Débit, Débit de Base, Intensité" "Débit, Débit de Base, Intensité" "Débit, Débit de Base, Intensité" ...
#>  $ is_experimental          : logi [1:563] FALSE FALSE FALSE FALSE FALSE FALSE ...
#>  $ input_vars               : chr [1:563] "ETP" "Q" "Q" "Q" ...
#>  $ source                   : chr [1:563] NA "TALLAKSEN, L. et H. VAN LANEN, éd. (2004). Hydrological drought. Processes and estimation methods for streamflo"| __truncated__ "TALLAKSEN, L. et H. VAN LANEN, éd. (2004). Hydrological drought. Processes and estimation methods for streamflo"| __truncated__ NA ...
#>  $ preferred_sampling_period: chr [1:563] NA NA NA NA ...
#>  $ is_date                  : logi [1:563] FALSE FALSE FALSE FALSE FALSE FALSE ...
#>  $ to_normalise             : logi [1:563] FALSE FALSE FALSE FALSE FALSE FALSE ...
#>  $ palette                  : chr [1:563] "#452C1A #7F4A23 #B3762A #D4B86A #EFE0B0 #BCE6DB #7ACEB9 #449C93 #2A6863 #193830" NA NA NA ...
#>  $ script_path              : chr [1:563] "Evapotranspiration/ETPA.R" "Flow/Baseflow/criteria/BFI_Wal.R" "Flow/Baseflow/criteria/BFM.R" "Flow/Baseflow/criteria/delta{BFI}_LH_H.R" ...

On which we can filter criteria on temperatures:

metaEX_temp <- metaEX_all %>%
  filter(grepl("Temperature", topic_en),
         !grepl("Sensitivity_to_Climate_Variability", script_path))
knitr::kable(metaEX_temp %>% select("variable_en", "name_en"))
variable_en name_en
meanTA Average of annual average temperatures
meanTSA_DJF Average temperatures of each winter (months of December, January and February)
meanTSA_MAM Average temperatures of each spring (months of March, April and May)
meanTSA_JJA Average temperatures of each summer (months of June, July and August)
meanTSA_SON Average temperatures of each fall (months of September, October and November)
TA Annual mean temperature
TMA_jan Average daily temperatures for each January
TMA_feb Average daily temperatures for each February
TMA_mar Average daily temperatures for each March
TMA_apr Average daily temperatures for each April
TMA_may Average daily temperatures for each May
TMA_jun Average daily temperatures for each June
TMA_jul Average daily temperatures for each July
TMA_aug Average daily temperatures for each August
TMA_sep Average daily temperatures for each September
TMA_oct Average daily temperatures for each October
TMA_nov Average daily temperatures for each November
TMA_dec Average daily temperatures for each December
TSA_DJF Annual winter temperatures
TSA_MAM Annual spring temperatures
TSA_JJA Annual summer temperatures
TSA_SON Annual autumn temperatures

Then, we format the data for the function CARD_extraction().

df_temp <- df_ts %>%
  select("Date", "id", "Temp") %>%
  rename(T = "Temp")
str(df_temp)
#> 'data.frame':    21915 obs. of  3 variables:
#>  $ Date: Date, format: "1999-01-01" "1999-01-02" ...
#>  $ id  : chr  "K265401001" "K265401001" "K265401001" "K265401001" ...
#>  $ T   : num  3.8 3.1 4.2 6.1 8.5 8.3 6.1 3 -0.6 -4 ...

And run the extraction of indicators!

res_temp <- CARD_extraction(
  df_temp,
  CARD_name = metaEX_temp$variable_en
)
str(res_temp)
#> List of 2
#>  $ metaEX: tibble [2 × 20] (S3: tbl_df/tbl/data.frame)
#>   ..$ variable_en       : chr [1:2] "meanTA" "TA"
#>   ..$ unit_en           : chr [1:2] "°C" "°C"
#>   ..$ name_en           : chr [1:2] "Average of annual average temperatures" "Annual mean temperature"
#>   ..$ description_en    : chr [1:2] "" ""
#>   ..$ method_en         : chr [1:2] "1. annual aggregation [09-01, 08-31] - mean\n2. no temporal aggregation - average" ""
#>   ..$ sampling_period_en: chr [1:2] "09-01, 08-31" "09-01, 08-31"
#>   ..$ topic_en          : chr [1:2] "Temperature, Average, Intensity" "Temperature, Average, Intensity"
#>   ..$ variable_fr       : chr [1:2] "moyTA" "TA"
#>   ..$ unit_fr           : chr [1:2] "°C" "°C"
#>   ..$ name_fr           : chr [1:2] "Moyenne des températures moyennes annuelles" "Température moyenne annuelle"
#>   ..$ description_fr    : chr [1:2] "" ""
#>   ..$ method_fr         : chr [1:2] "1. agrégation annuelle [01-09, 31-08] - moyenne\n2. aucune agrégation temporelle - moyenne" ""
#>   ..$ sampling_period_fr: chr [1:2] "01-09, 31-08" "01-09, 31-08"
#>   ..$ topic_fr          : chr [1:2] "Température, Moyenne, Intensité" "Température, Moyenne, Intensité"
#>   ..$ is_experimental   : logi [1:2] FALSE FALSE
#>   ..$ input_vars        : chr [1:2] "Q" "T"
#>   ..$ is_date           : logi [1:2] FALSE FALSE
#>   ..$ to_normalise      : logi [1:2] FALSE FALSE
#>   ..$ palette           : chr [1:2] "#053061 #2166AC #4393C3 #92C5DE #D1E5F0 #FDDBC7 #F4A582 #D6604D #B2182B #67001F" "#053061 #2166AC #4393C3 #92C5DE #D1E5F0 #FDDBC7 #F4A582 #D6604D #B2182B #67001F"
#>   ..$ script_path       : chr [1:2] "Temperature/meanTA.R" "Temperature/TA.R"
#>  $ dataEX:List of 2
#>   ..$ meanTA: tibble [3 × 2] (S3: tbl_df/tbl/data.frame)
#>   .. ..$ id    : chr [1:3] "E645651001" "K134181001" "K265401001"
#>   .. ..$ meanTA: num [1:3] 10.51 10.28 7.83
#>   ..$ TA    : tibble [63 × 3] (S3: tbl_df/tbl/data.frame)
#>   .. ..$ id  : chr [1:63] "E645651001" "E645651001" "E645651001" "E645651001" ...
#>   .. ..$ Date: Date[1:63], format: "1998-09-01" "1999-09-01" ...
#>   .. ..$ TA  : num [1:63] NA 10.5 10.7 10.6 10.9 ...

Statistical indicators for potential evapotranspiration

We select all criteria on evaporation except the one evolving flow.

metaEX_evap <- metaEX_all %>%
  filter(grepl("Evapotranspiration", topic_en),
         !grepl("Flow", topic_en))
knitr::kable(metaEX_evap %>% select("variable_en", "name_en"))
variable_en name_en
ETPA Cumulative annual evapotranspiration

Then, we format the data and run the function CARD_extraction().

df_evap <- df_ts %>%
  select("Date", "id", "Evap") %>%
  rename(ETP = "Evap") # R is the precipitation variable in the dataframe
str(df_evap)
#> 'data.frame':    21915 obs. of  3 variables:
#>  $ Date: Date, format: "1999-01-01" "1999-01-02" ...
#>  $ id  : chr  "K265401001" "K265401001" "K265401001" "K265401001" ...
#>  $ ETP : num  0.4 0.3 0.4 0.5 0.6 0.6 0.5 0.3 0.2 0 ...
res_evap <- CARD_extraction(
  df_evap,
  CARD_name = metaEX_evap$variable_en
)
str(res_evap)
#> List of 2
#>  $ metaEX: tibble [1 × 20] (S3: tbl_df/tbl/data.frame)
#>   ..$ variable_en       : chr "ETPA"
#>   ..$ unit_en           : chr "mm"
#>   ..$ name_en           : chr "Cumulative annual evapotranspiration"
#>   ..$ description_en    : chr ""
#>   ..$ method_en         : chr ""
#>   ..$ sampling_period_en: chr "09-01, 08-31"
#>   ..$ topic_en          : chr "Evapotranspiration, Average, Intensity"
#>   ..$ variable_fr       : chr "ETPA"
#>   ..$ unit_fr           : chr "mm"
#>   ..$ name_fr           : chr "Cumul des évapotranspirations annuelles"
#>   ..$ description_fr    : chr ""
#>   ..$ method_fr         : chr ""
#>   ..$ sampling_period_fr: chr "01-09, 31-08"
#>   ..$ topic_fr          : chr "Évapotranspiration, Moyenne, Intensité"
#>   ..$ is_experimental   : logi FALSE
#>   ..$ input_vars        : chr "ETP"
#>   ..$ is_date           : logi FALSE
#>   ..$ to_normalise      : logi FALSE
#>   ..$ palette           : chr "#452C1A #7F4A23 #B3762A #D4B86A #EFE0B0 #BCE6DB #7ACEB9 #449C93 #2A6863 #193830"
#>   ..$ script_path       : chr "Evapotranspiration/ETPA.R"
#>  $ dataEX:List of 1
#>   ..$ ETPA: tibble [63 × 3] (S3: tbl_df/tbl/data.frame)
#>   .. ..$ id  : chr [1:63] "E645651001" "E645651001" "E645651001" "E645651001" ...
#>   .. ..$ Date: Date[1:63], format: "1998-09-01" "1999-09-01" ...
#>   .. ..$ ETPA: num [1:63] NA 651 655 650 683 ...

Statistical indicators for precipitations

We select all criteria on precipitations except:

  • criteria using flow,
  • criteria related to parametrization, sensitivity to climate variability, or ratio
  • criteria related to liquid or solid precipitations
metaEX_prec <- metaEX_all %>%
  filter(grepl("Precipitation", topic_en),
         !grepl("Flow|Parameterization|Sensitivity to Climate Variability|Ratio", topic_en),
         !grepl("liquid|solid|Annual precipitation", name_en))
knitr::kable(metaEX_prec %>% select("variable_en", "name_en"))
variable_en name_en
dtCDDA Maximum number of consecutive dry days in the year
dtCDDMA_jan Maximum number of consecutive dry days in each January
dtCDDMA_feb Maximum number of consecutive dry days in each February
dtCDDMA_mar Maximum number of consecutive dry days in each March
dtCDDMA_apr Maximum number of consecutive dry days in each April
dtCDDMA_may Maximum number of consecutive dry days in each May
dtCDDMA_jun Maximum number of consecutive dry days in each June
dtCDDMA_jul Maximum number of consecutive dry days in each July
dtCDDMA_aug Maximum number of consecutive dry days in each August
dtCDDMA_sep Maximum number of consecutive dry days in each September
dtCDDMA_oct Maximum number of consecutive dry days in each October
dtCDDMA_nov Maximum number of consecutive dry days in each November
dtCDDMA_dec Maximum number of consecutive dry days in each December
dtCDDSA_DJF Maximum number of consecutive dry days in winter
dtCDDSA_MAM Maximum number of consecutive dry days in spring
dtCDDSA_JJA Maximum number of consecutive dry days in summer
dtCDDSA_SON Maximum number of consecutive dry days in autumn
dtCWDA Maximum number of consecutive rainy days in the year
dtCWDMA_jan
dtCWDMA_feb
dtCWDMA_mar
dtCWDMA_apr
dtCWDMA_may
dtCWDMA_jun
dtCWDMA_jul
dtCWDMA_aug
dtCWDMA_sep
dtCWDMA_oct
dtCWDMA_nov
dtCWDMA_dec
dtCWDSA_DJF Maximum number of consecutive rainy days in winter
dtCWDSA_MAM Maximum number of consecutive rainy days in spring
dtCWDSA_JJA Maximum number of consecutive rainy days in summer
dtCWDSA_SON Maximum number of consecutive rainy days in autumn
dtRA01mm Number of rainy days in the year
dtRA20mm Number of heavy rain days in the year
dtRA50mm Number of extreme rain days in the year
dtRMA01mm_jan Number of rainy days of each January
dtRMA01mm_feb Number of rainy days of each February
dtRMA01mm_mar Number of rainy days of each March
dtRMA01mm_apr Number of rainy days of each April
dtRMA01mm_may Number of rainy days of each May
dtRMA01mm_jun Number of rainy days of each June
dtRMA01mm_jul Number of rainy days of each July
dtRMA01mm_aug Number of rainy days of each August
dtRMA01mm_sep Number of rainy days of each September
dtRMA01mm_oct Number of rainy days of each October
dtRMA01mm_nov Number of rainy days of each November
dtRMA01mm_dec Number of rainy days of each December
dtRMA20mm_jan Number of heavy rain days for each January
dtRMA20mm_feb Number of heavy rain days for each February
dtRMA20mm_mar Number of heavy rain days for each March
dtRMA20mm_apr Number of heavy rain days for each April
dtRMA20mm_may Number of heavy rain days for each May
dtRMA20mm_jun Number of heavy rain days for each June
dtRMA20mm_jul Number of heavy rain days for each July
dtRMA20mm_aug Number of heavy rain days for each August
dtRMA20mm_sep Number of heavy rain days for each September
dtRMA20mm_oct Number of heavy rain days for each October
dtRMA20mm_nov Number of heavy rain days for each November
dtRMA20mm_dec Number of heavy rain days for each December
dtRMA50mm_jan Number of extreme rain days for each January
dtRMA50mm_feb Number of extreme rain days for each February
dtRMA50mm_mar Number of extreme rain days for each March
dtRMA50mm_apr Number of extreme rain days for each April
dtRMA50mm_may Number of extreme rain days for each May
dtRMA50mm_jun Number of extreme rain days for each June
dtRMA50mm_jul Number of extreme rain days for each July
dtRMA50mm_aug Number of extreme rain days for each August
dtRMA50mm_sep Number of extreme rain days for each September
dtRMA50mm_oct Number of extreme rain days for each October
dtRMA50mm_nov Number of extreme rain days for each November
dtRMA50mm_dec Number of extreme rain days for each December
dtRSA01mm_DJF Number of rainy days in winter
dtRSA01mm_MAM Number of rainy days in spring
dtRSA01mm_JJA Number of rainy days in summer
dtRSA01mm_SON Number of rainy days in autumn
dtRSA20mm_DJF Number of heavy rain days in winter
dtRSA20mm_MAM Number of heavy rain days in spring
dtRSA20mm_JJA Number of heavy rain days in summer
dtRSA20mm_SON Number of heavy rain days in autumn
dtRSA50mm_DJF Number of extreme rain days in winter
dtRSA50mm_MAM Number of extreme rain days in spring
dtRSA50mm_JJA Number of extreme rain days in summer
dtRSA50mm_SON Number of extreme rain days in autumn
meanRA Mean of annual total precipitation accumulations
meanRA_DJF Average total precipitations of each winter (months of December, January and February)
meanRA_MAM Average total precipitations of each spring (months of March, April and May)
meanRA_JJA Average total precipitations of each summer (months of June, July and August)
meanRA_SON Average total precipitations of each fall (months of September, October and November)
RCXA1 Annual maximum of daily precipitation
RCXA5 Annual maximum of 5-day cumulative daily precipitation
RMA_jan Cumulative daily precipitation for each January
RMA_feb Cumulative daily precipitation for each February
RMA_mar Cumulative daily precipitation for each March
RMA_apr Cumulative daily precipitation for each April
RMA_may Cumulative daily precipitation for each May
RMA_jun Cumulative daily precipitation for each June
RMA_jul Cumulative daily precipitation for each July
RMA_aug Cumulative daily precipitation for each August
RMA_sep Cumulative daily precipitation for each September
RMA_oct Cumulative daily precipitation for each October
RMA_nov Cumulative daily precipitation for each November
RMA_dec Cumulative daily precipitation for each December
RSA_DJF Cumulative daily precipitation of each winter
RSA_MAM Cumulative daily precipitation of each spring
RSA_JJA Cumulative daily precipitation of each summer
RSA_SON Cumulative daily precipitation of each autumn

Then, we format the data and run the function CARD_extraction().

df_prec <- df_ts %>%
  select("Date", "id", "Ptot") %>%
  rename(R = "Ptot") # R is the precipitation variable in the dataframe
str(df_prec)
#> 'data.frame':    21915 obs. of  3 variables:
#>  $ Date: Date, format: "1999-01-01" "1999-01-02" ...
#>  $ id  : chr  "K265401001" "K265401001" "K265401001" "K265401001" ...
#>  $ R   : num  0.2 18.9 22.5 0.5 0 0 1.8 16.6 3.4 11.8 ...
res_prec <- CARD_extraction(
  df_prec,
  CARD_name = metaEX_prec$variable_en
)
str(res_prec)
#> List of 2
#>  $ metaEX: tibble [7 × 20] (S3: tbl_df/tbl/data.frame)
#>   ..$ variable_en       : chr [1:7] "dtCDDA" "dtCWDA" "dtRA01mm" "dtRA20mm" ...
#>   ..$ unit_en           : chr [1:7] "day" "day" "day" "day" ...
#>   ..$ name_en           : chr [1:7] "Maximum number of consecutive dry days in the year" "Maximum number of consecutive rainy days in the year" "Number of rainy days in the year" "Number of heavy rain days in the year" ...
#>   ..$ description_en    : chr [1:7] "Maximum number of consecutive days in the year with less than 1 mm of precipitation" "Maximum number of consecutive days in the year with at least 1 mm of precipitation" "Number of days with at least 1 mm of precipitation" "Number of days with at least 20 mm of precipitation" ...
#>   ..$ method_en         : chr [1:7] "" "" "" "" ...
#>   ..$ sampling_period_en: chr [1:7] "09-01, 08-31" "09-01, 08-31" "09-01, 08-31" "09-01, 08-31" ...
#>   ..$ topic_en          : chr [1:7] "Precipitations, Dry Period, Duration" "Precipitations, Low, Duration" "Precipitations, Low, Duration" "Precipitations, Heavy, Duration" ...
#>   ..$ variable_fr       : chr [1:7] "dtCDDA" "dtCWDA" "dtRA01mm" "dtRA20mm" ...
#>   ..$ unit_fr           : chr [1:7] "jour" "jour" "jour" "jour" ...
#>   ..$ name_fr           : chr [1:7] "Nombre maximal de jours secs consécutifs dans l'année" "Nombre maximal de jours pluvieux consécutifs dans l'année" "Nombre de jours pluvieux dans l'année" "Nombre de jours de forte pluie dans l'année" ...
#>   ..$ description_fr    : chr [1:7] "Nombre maximal de jours consécutifs dans l'année avec moins de 1 mm de précipitation" "Nombre maximal de jours consécutifs dans l'année avec au moins 1 mm de précipitation" "Nombre de jours avec au moins 1 mm de précipitations" "Nombre de jours avec au moins 20 mm de précipitations" ...
#>   ..$ method_fr         : chr [1:7] "" "" "" "" ...
#>   ..$ sampling_period_fr: chr [1:7] "01-09, 31-08" "01-09, 31-08" "01-09, 31-08" "01-09, 31-08" ...
#>   ..$ topic_fr          : chr [1:7] "Précipitations, Période sèche, Durée" "Précipitations, Faibles, Durée" "Précipitations, Faible, Durée" "Précipitations, Forte, Durée" ...
#>   ..$ is_experimental   : logi [1:7] FALSE FALSE FALSE FALSE FALSE FALSE ...
#>   ..$ input_vars        : chr [1:7] "R" "R" "R" "R" ...
#>   ..$ is_date           : logi [1:7] FALSE FALSE FALSE FALSE FALSE FALSE ...
#>   ..$ to_normalise      : logi [1:7] FALSE FALSE FALSE FALSE FALSE FALSE ...
#>   ..$ palette           : chr [1:7] "#003C30 #01665E #35978F #80CDC1 #C7EAE5 #F6E8C3 #DFC27D #BF812D #8C510A #543005" "#452C1A #7F4A23 #B3762A #D4B86A #EFE0B0 #BCE6DB #7ACEB9 #449C93 #2A6863 #193830" "#452C1A #7F4A23 #B3762A #D4B86A #EFE0B0 #BCE6DB #7ACEB9 #449C93 #2A6863 #193830" "#452C1A #7F4A23 #B3762A #D4B86A #EFE0B0 #BCE6DB #7ACEB9 #449C93 #2A6863 #193830" ...
#>   ..$ script_path       : chr [1:7] "Precipitations/dtCDDA.R" "Precipitations/dtCWDA.R" "Precipitations/dtRA01mm.R" "Precipitations/dtRA20mm.R" ...
#>  $ dataEX:List of 7
#>   ..$ dtCDDA  : tibble [63 × 3] (S3: tbl_df/tbl/data.frame)
#>   .. ..$ id    : chr [1:63] "E645651001" "E645651001" "E645651001" "E645651001" ...
#>   .. ..$ Date  : Date[1:63], format: "1998-09-01" "1999-09-01" ...
#>   .. ..$ dtCDDA: int [1:63] NA 12 17 27 18 19 17 17 27 19 ...
#>   ..$ dtCWDA  : tibble [63 × 3] (S3: tbl_df/tbl/data.frame)
#>   .. ..$ id    : chr [1:63] "E645651001" "E645651001" "E645651001" "E645651001" ...
#>   .. ..$ Date  : Date[1:63], format: "1998-09-01" "1999-09-01" ...
#>   .. ..$ dtCWDA: int [1:63] NA 16 13 11 11 9 6 17 10 9 ...
#>   ..$ dtRA01mm: tibble [63 × 3] (S3: tbl_df/tbl/data.frame)
#>   .. ..$ id      : chr [1:63] "E645651001" "E645651001" "E645651001" "E645651001" ...
#>   .. ..$ Date    : Date[1:63], format: "1998-09-01" "1999-09-01" ...
#>   .. ..$ dtRA01mm: int [1:63] NA 168 181 162 121 132 135 149 161 142 ...
#>   ..$ dtRA20mm: tibble [63 × 3] (S3: tbl_df/tbl/data.frame)
#>   .. ..$ id      : chr [1:63] "E645651001" "E645651001" "E645651001" "E645651001" ...
#>   .. ..$ Date    : Date[1:63], format: "1998-09-01" "1999-09-01" ...
#>   .. ..$ dtRA20mm: int [1:63] NA 4 5 3 4 NA 2 3 1 7 ...
#>   ..$ dtRA50mm: tibble [63 × 3] (S3: tbl_df/tbl/data.frame)
#>   .. ..$ id      : chr [1:63] "E645651001" "E645651001" "E645651001" "E645651001" ...
#>   .. ..$ Date    : Date[1:63], format: "1998-09-01" "1999-09-01" ...
#>   .. ..$ dtRA50mm: int [1:63] NA NA NA NA NA NA NA NA NA NA ...
#>   ..$ RCXA1   : tibble [63 × 3] (S3: tbl_df/tbl/data.frame)
#>   .. ..$ id   : chr [1:63] "E645651001" "E645651001" "E645651001" "E645651001" ...
#>   .. ..$ Date : Date[1:63], format: "1998-04-01" "1999-04-01" ...
#>   .. ..$ RCXA1: num [1:63] NA 28.5 32.5 30.2 25.1 20.5 22.6 49.2 25.1 31.1 ...
#>   ..$ RCXA5   : tibble [63 × 3] (S3: tbl_df/tbl/data.frame)
#>   .. ..$ id   : chr [1:63] "E645651001" "E645651001" "E645651001" "E645651001" ...
#>   .. ..$ Date : Date[1:63], format: "1998-04-01" "1999-04-01" ...
#>   .. ..$ RCXA5: num [1:63] NA 80 70.6 54.1 64.7 49.4 38.4 85.5 60.4 60.5 ...